Non-stationary Covariance Function

نویسندگان

  • Chintan A. Dalal
  • Vladimir Pavlovic
  • Robert E. Kopp
چکیده

Analyzing datasets, such as sea-level records, pose a challenging statistical problem for reasons including non-stationarity, non-uniformly smooth spatial boundaries, and sparsity in the data. In this paper, we propose a framework to estimate the non-stationary covariance function by employing intrinsic statistics on the local covariates. These local covariates represent the underlying local correlation in the measurements, and they are assumed to lie on a Riemannian manifold of positive definite matrices. Additionally, we provide a technique for data-assimilation of correlated natural processes in order to improve the regression estimates arising from spatially sparse datasets. Experiments on a synthetic and real dataset of relative sealevel changes across the world demonstrate improvements in the error metrics for the regression estimates using our newly proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic Non-stationary Covariance Function for Climate Modeling

Designing a covariance function that represents the underlying correlation is a crucial step in modeling complex natural systems, such as climate models. Geospatial datasets at a global scale usually suffer from non-stationarity and non-uniformly smooth spatial boundaries. A Gaussian process regression using a non-stationary covariance function has shown promise for this task, as this covarianc...

متن کامل

Error-Covariance Analysis of the Total Least Squares Problem

This paper derives and analyzes the estimate error-covariance associated for both the non-stationary and stationary noise process cases with uncorrelated element-wise components for the total least squares problem. The non-stationary case is derived directly from the associated unconstrained total least squares loss function. The stationary case is derived by using a linear expansion of the tot...

متن کامل

Spatial Modelling Using a New Class of Nonstationary Covariance Functions.

We introduce a new class of nonstationary covariance functions for spatial modelling. Nonstationary covariance functions allow the model to adapt to spatial surfaces whose variability changes with location. The class includes a nonstationary version of the Matérn stationary covariance, in which the differentiability of the spatial surface is controlled by a parameter, freeing one from fixing th...

متن کامل

Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples

Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...

متن کامل

A non-stationary paradigm for the dynamics of multivariate financial returns1

A simple non-stationary paradigm for the dynamics of multivariate returns is discussed. Unlike most of the multivariate econometric models for financial returns, our approach supposes the volatility to be exogenous and non-stationary. The vectors of returns are assumed to be animated by a slowly changing unconditional covariance structure. The methodological frame is that of non-parametric regr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015